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Velocity-difference probability density functions for Burgers turbulence
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In this paper the Polyakov equatipRhys. Rev. B52, 6183(1995] for the velocity-difference probability
density functions, with the random Gaussian external force, with the correlation funetign-1—y¢, is
analyzed. Solutions for the cases={2,1/2,3 are found, which agree very well with available numerical
results. It is also argued that the stationary regime of Burgers turbulence can depend not only on the distribu-
tion of the external force, but also on the dissipative regularizafi®h063-651X97)03306-0

PACS numbep): 47.27.Gs, 03.40.Kf

The Burgers equation is attracting considerable attentio®[u] as t— +«. After that, we have to go to the limit
as a model for one-dimensional turbulence without pressure;—0. We assume that both limits, taken in the specified
which captures, in a simple manner, some of its characterisarder, exist. The solution for this equation can be represented
tic features. More precisely, when supplemented by a ranin the form of a path integral, though it seems to be rather

dom external force correlated at large distances, difficult to calculate it in a closed form. The saddle point
approximationginstanton contributionshave been found in
Ug U= vUyyt F(X1), (1 a number of workd7-9], which allowed the tails of the

. . . . probability density functionPDF for velocity differences
this equation can be used to describe the stationary turbLéind for velocity gradients to be calculated in some cases.

Ience.wnh nqnlmear energy transfer over sc;ales from thebther direct approaches to the same calculations have been
pumping region (external forcg to the dissipative one éieveloped in5,6]

(shocks. It is always assumed that the regions of source an
sink are very well separated, i.e., the formal limits of the
large dimension of the system and small viscosity are co

The approach proposed by Polyak[®] allows one to
calculate not only the tails, but also thehole velocity-
i S ; . Ndifference PDF. It is based on the self-consistent conjectures
sidered. This is |n'accord with the general picture of deve on the operator product expansion, Galilean and scaling in-
oped turbulence, first proposed by Kolmogoidy. variance. Starting with the Burgers’ equation with a random

bIRefcer:tIy, t'_“ethOdf] of quag:tum ¥ﬁld theory (;)ecalme 3vailaaussian stirring forceEqgs.(1) and(2)] it was obtained that
able for treating such a probiem. 1hey were 0eveloped anf,q cparacteristic function for the velocity-difference PDF

firs.t applied to the Bu.rge_rs turbulenqe by Polya@, Z function), determined as
which allowed the qualitative explanation of nhumerical ob-
servationi3,4]._This indi_cates tha? the randomly driven Bur- Z(u,y)={exp(u[u(x+y/2) —u(x—y/2)])), (4)
gers equation is a possible candidate for an exactly solvable
model. In this paper we present rather strong evidence inbeys the following differential master equation:
favor of such an assertion. We show that the method&Jof
allow one to obtain quantitatively accurate results. The meth-
ods we are using in this paper can be applied with some
modifications to the turbulence with pressure, passive scalar
advection, problems of self-organized criticality, €t2,12]. The correlation function of the external fore¢y) can be
In its usual formulation the problem is specified by choos-chosen at our discretion, afdanda(u) are undetermined
ing the force to be Gaussian with zero mean and white ircoefficients, the so-called “anomalies.” The dependence

aZ

(i—@»—w 0) - k(y)u2Z=a(wz. ()
on w) k(0)—k(y)uZ=a(u)Z.

time variance of thea anomaly must be chosen to conform to the scaling
invariance and can be different depending on the scaling
Fx,Of(x' ")) =kr(x—x")5(t—t"). (2)  properties of the force correlation function. If for a large-

) ] . _scale-correlated force this function can be expanded as
Equation (1) thus becomes the Langevin equation, which,(yy~1—y® then thea anomaly must depend op as
leads uniquely to the Fokker-Planck equation for the probfoliows: a(u)=au” o= (2— a)/(1+ a). Using the scaling
ability distribution functional at time ansatzZ(u,y) =®(ny?), y=(a+1)/3, one can rewrite Eq.

(5) in the form

UUy— VUyy

XD+ y(1—2b) P’ —x°d=ax’®, (6)

J _[4 o)
Emmn—fxwm

o wherex= uy”.

su(y) P(Luly). () The unknown parametees and b should be determined
from the main requirement that the PDF be a positive, finite,

The problem is completely defined if we assuno{&)=0 at and normalized function. Other possible restrictions for the

some initial moment and consider the stationary limit oftheory are discussed later. Polyakov considered the ease

1
t3 f dy k(x—y)
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=2 and found the solution for Eq6), corresponding t@  3/(a+1) is an integer, and the corresponding term does not
=0. It gives the left tail for the velocity-difference PDF contribute to the integral. These cases<1/2,2) are solv-
~1/u®? while the numerical results di4] show ~1/u®>.  able and will be considered below. We will also consider
[Here and in what follows we will refer to the velocity dif- another solvable case, withi=1. By solvability we mean
ferenceAu=u(x+y/2)—u(x—y/2) simply asu.] that the problem can be either solved exactly or reduced to
In fact, it was mentioned already [2], thata=0 should finding the ground state in some potential, which can be done
not be the only possible choice. Strong evidence for thiswumerically.
nonuniversality was also found i@]. It was observed that We start with the case=2. Let us Laplace transform Eq.
the left tail of the PDF depends on the external force, while(6) to get an equation for the probability distribution
a=0 would exclude such a possibility. This indicates thatw(u,y)=w(z)/y
there must be other solutions of the Polyakov equation, cor- _ _ _ _
responding taa# 0. W’ +22W' + (1+ 2b)zZW= — aw, (10)
In the present paper we find such solutions. We consider
the correlator of the force in its general form(y)~1  Wherez=ul/y, assuming the notation ¢2]. All derivatives
—y% and analyze several solvable cases=Q,a=1a in this equation are with respect to Below we consider
=1/2). The found solutions turn out to be in a remarkableonly the functionw and drop the tilde sign. Asymptotics of
agreement with numerical results [@f]. We then argue that the solution ajz| —< can be easily found from Eq10)
in addition to the dependence on the external force, the sta-

tionary regime could also depend on the structure of the dis- woe—2B e 1 (11)
sipation term(see alsq12]). ' z+1:
To begin with, we write down the asymptotics of the so-
lutions of Eq.(6) for small x We are looking for a physically reasonable solution, with the
asymptotics
aY  sfa+1) 2b
d(x)~1 1—2byx cX , (7 A
and for large positivex 1
5 W~ —opFT, 2T (12
d(x)xexp—= x°?, (8
3‘/; For thew function to be normalizable we should consider
. _ 53 .
wherea, b, andc should be determined from the conditions only b>0. Upon writingw=¥e~*"%, we exclude the first
mentioned above. derivative from Eq.(10) and get the Schdinger equation
We note that the most restrictive condition, the conditionfor the ¥ function,
of normalizability of the PDF, can be reformulated directly .
in terms of the® function. Indeed, the functio® must be e | _
analytical in the right half of the complex plane Re0, and R 4 2bz| ¥ =a¥, (13

must vanish foix— p=*io, p=0. This, along with the con-

dition of normalizationd®(0)=1, gives the quantization rule mentioned in2]. The ground state of this equation is a posi-

for a andb. tive and normalizable function. This is the only solution sat-
Let us denote the Laplace transformd{x) asw(z), the isfying the general requirements for the PDF. Thus, for any

velocity-difference distribution function beingw(u,y) b>0 we find the PDF as the ground state of the potential

=w(uly”)/y”. The integral representation far(z) is (13), a being the energy of the ground state. Note that the
A caseb=1/2 corresponds to the left tail of the PDF1/u?,
~ prie and the PDF obtained as a solution of Etp), fits well the
— X ’
w(z)= Lim e~ (x)dx. ©) numerical observationgl] (Fig. 1). A numerical estimate in

this case gives for tha anomalya=0.354.
The asymptotics ofv(z) for large positivez is deter- An important remark should be made here. Integrating
mined by largex and is given byw(z)=exp(—yZ/3). To  Eq.(10) from —o to + for the caseb>1/2, we get
find the asymptotics for large negatizewe deform the tails

of the integration contour to coincide with the negative real
axis. Sincee™ ** decays rapidly ag— — o, the asymptotics (2b— 1)J ZM2)= —af w(2).
is determined by the leading singularity in the expangion
In general, two cases are possible. If@41)<2b, the We would like to stress that this expression does not con-

asymptotics isv~z~1~31*9) Such behavior is observed in tradict the requirementw(u,y)u du=0. A significant con-
numerical simulation$4], which indicates that this inequal- tribution to the latter integral can come from nonuniversal
ity usually holds, and thé anomaly does not affect the tails of the distribution function, not described by E0).
asymptotics. For B<3/(a+1) the asymptotics should in These tails are due to spontaneous breakdown of the Galilean
general be determined by ttheanomaly,w(z)~z 2°~1, if symmetry[2]. This fact should be taken into account when
2b is not an integer. The asymptoti€g) also shows that one compares the theoretical results with experimental obser-
there exist two degenerate cases. These are the cases wivations.
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FIG. 1. Collapse of the PDFs in the universal regiomaf, for FIG. 2. Collapse of the PDFs in the universal regiom\af, for
a=2. The solution of Eq(10) for b=1/2 is depicted by the dashed «=1/2. The solution of Eq(16) for b=1 is depicted by the dashed
line. (Courtesy of V. Yakhot and A. Chekhidv].) line. (Courtesy of V. Yakhot and A. Chekhldv].)

Nevertheless, a case exists for whi@) =0, which cor- wherez=u/yY2. Asymptotics of the left tail of the solution

responds t@=0. To consider it, we set=0 in (10), and by is given by Eq.(12). Excluding the first derivative from this
the substitutiors= — z°/3 arrive at the degenerate hypergeo-€equation, we obtain the Schtinger equation for the func-

metric equation tion ¥ =w exp@/12—az?2)
4 2
SW,_F(')/_S)W,_CVW:Ov (14) T Z__E 2 __a_
\If+16 42 bz|V= 4\If. (17)

with parametersy=32, a=3(2b+1) [do not confuse these
parameters, used only in the analysis of Et¥), with the As in the previous case, one can find the solutions as the
parameterse and v, introduced in Eq.(6)]. The positive, ground states of this equation. The numerically observed
finite and normalizable solution for this case has been foun®DF [4] has the left tail~1/u® in the considered case. The
in [2]. This solution can be constructed in the following way: same PDF can be obtained from our equation if welset
the only solution, exponentially decaying at>—o and =1, i.e., when the8 anomaly is absent. One can then nu-
having powerlike asymptotics at— +«, has the form merically obtaina=—0.473. A comparison of the whole
PDF with the numerical resultf4] reveals a very good
agreementFig. 2.

To analyze the last case,=1, let us work in thex rep-
resentation. Note that by the substitutids x*2 one can cast

(0+) Eq. (6) into the form

w(s)= J

(s+)
w(s)zf el(t—s) @« ?3dt, s<O0,

el(t—s)~*t* 2¥dt, s>0, (15)
” 3D+ (3-2b)®' —({+a)d=0. (18
where in each integral the contour of the integration starts
from —oo, goes around only one of the two singular points
(denoted as the upper limjti a positive direction and ends

This equation can be solved by the Laplace transform.
The solution with the correct asymptotics is

up at—oo again. One of these solutions can be analytically o3 g+t 1] o 2T2
. - . d(x)=Cx 1Tt e
continued to the other one onlydf=n—1/6, wheren is any
integer number. It is interesting to note that this exact quan- o) 2o
tization rule can also be obtained as the Bohr-Sommerfeld X wa et (74 2y2/37%) *2d 7. (19

condition for quantum mechanics considered above, with

zero energy(l would like to thank V. Gurarie for pointing \yith

this ou. Positivity of the solution requires=1.

For the other degenerate case, the correlator of the extery, = — 1[1+4b/3]+a/\6, a,=—%[1+4b/3]—al /6.

nal force has the form: x(y)=1—y%2 This force leads to

a differential equation for thev(z) function, analogous to ®(x) will be an analytical function for Re=0, and a

Eq. (10 decaying function forx—p=i% only whena;=n or a,
=m, wheren is any negative integer number anmdis any

W+ 322w’ + (2 +b)zw=aw’, (16)  non-negative integer number. The only possibility of getting
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®(0)=1 is a;=n, which gives the following quantization

rule: a/\6—2b/3=n+1/2. Positivity of the solution
forces us to selech=-1, and Eq.(19 reduces to®

= expy2/3x%2.

Finally, we discuss an important general restriction that

DYREV

ax"®—2(1—b)d’' <0, (23)

whereb='[§+ 1.
One can easily see that this condition is rather strong and

can be imposed on the theory. This follows from the physicaljio\s one to considerably restrict the possible solutions of

condition of positivity of dissipation and was proposed by

Polyakov[10]. It can be obtained if one notes that the opera
tor

(92

(NU(X)+Nqu(Xq)+-+)
e
ax®

(20

is not singular ifx does not coincide with any othex;.
Therefore,

2
imv —
X

v—0

M=

(21)

which leads to

™

J
— Z=—lim p(N2uZeMTy L (22)

v—0

a(N)Z+

where we use the notation i]. The right-hand side of this
expression is nonpositive. The functiai\) is analytical in

Eqg. (5). For example, it prohibits the solutions with< 3/4
“for the casea=2 and, probably, forces th8 anomaly to
vanish fora=<1/2.

Nevertheless, this inequality is absedior, at least, the
above arguments do not workk we consider the dissipation
in the form (—1)P*1v5?P/9x?P, with p>1 (the so-called
hyperdissipation This is the case for which the numerical
simulations[4] have been performed. The structure of the
shock fronts is changed qualitatively fpie>1 (see, e.g., nu-
merical simulations if11]), which could lead to different
stationary regimes of the Burgers turbulence. In the frame-
work of the Polyakov method the possibility of such a non-
universality can be simply explained: any new small dissi-
pative operator, added to the system, has to be expandable
into UV-finite ones, which are conjectured to Beand Z,,,
with some new coefficienta andb.

| am very grateful to A. Polyakov for stimulating and
interesting discussions and suggestions. | would also like to

the right half of the complex plane, and may have a disconthank V. Gurarie for many useful discussions, and V. Yakhot
tinuity at the imaginary axis. Summing up corresponding ex-and A. Chekhlov for important conversations and for sharing
pressions forh = u/2, x;=x+y/2 and\,=—pul2, Xx,=x  with me the numerical results ¢#]. This work was sup-

—vy/2, we get the following necessary condition, that mustported by U.S. D.O.E. Contract No. DE-AC02-76-CHO-

be valid for all non-negative:
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